
Normal basis theorem
math center

The familiar normal basis theorem states that:

Theorem 0.1. Let L|K be a finite Galois extension with Galois group G. Then L ≃ K[G] as left
G-modules.

In other words, L viewed as a representation is isomorphic to the regular representation of G.
It then follows that

Hr(G,L) = Hr(G,K[G]) = Hr(G, IndG{1}(K)) = 0,

for all r > 0, where the last equality is Shapiro’s lemma.

1 Field theoretic proof

Let’s only sketch this proof because it’s somewhat long, although being quite elegant otherwise.

Lemma 1.1 (Linear independence of characters). If K is an integral domain and G is a monoid,
then the set of characters HomMon(G,K×) is linear independent over K.

Of course, we only need the case of K a field and G a group.

Proof. Let χ1, · · · , χn be characters. Consider the set

S := {(c1, · · · , cn) ∈ Kn \ 0 : c1χ1 + · · ·+ cnχn = 0}

Let (a1, · · · , an) be an element of S such that n := |{i : ai ̸= 0}| is minimal. Because χ(1) = 1 for
any character χ, n > 1. Thus we may assume WLOG that a1, a2 ̸= 0. Let h ∈ G be a constant to
be determined. Notice that

−a1χ1(gh) =
∑
i>1

aiχi(gh) =
∑
i>1

aiχi(g)χi(h),

and also
−a1χ1(gh) = −a1χ1(g)χ1(h) =

∑
i>1

aiχi(g)χ1(h).

Pick h ∈ G such that χ1(h) ̸= χ2(h). On subtracting the two equations, we obtain a nonzero linear
relation which clearly contradicts the minimality of (ai).

We first prove the theorem for infinite K. This amounts to the following two facts.

(I) Given thatK is infinite, for anyK-algebra A and L|K, the set HomK–Alg(A,L) is algebraically
independent over L.

(II) Let {xσ ∈ L : σ ∈ G} be a set of elements indexed by G, then it is a basis if and only if
det (τ(xσ))σ,τ ̸= 0.
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Since there exists a basis indexed by G, the formal polynomial (modulo abuse of notation)
det (τ(Xσ))σ,τ ̸= 0. We may plug in Xσ = σ(·), and by (I), there must exist x ∈ L such that
det (τσ(x))σ,τ ̸= 0. We apply (II) one more time to see that {σ(x)} is indeed a basis of L.

(II) follows from Lemma 1.1.
(I) is more tricky to prove. We need to show that P (χ1, · · · , χn) ̸= 0 for some nonzero polynomial

P ∈ L[X1, · · · , Xn]. The set
{(χ1(a), · · · , χn(a)) : a ∈ A}

generates the L-vector space Ln by Lemma 1.1, hence there must exist a1, · · · , an such that the
matrix (χi(aj))i,j is invertible. Consider the map

Kn A

(k1, · · · , kn)
∑

i kiai

composed with P (χ1(·), · · · , χn(·)). This is non-zero as a formal polynomial because P ̸= 0, thus
it must also be non-zero as a function. Here we used that K is infinite. This concludes the proof
of (I).

Now, suppose that L|K is a cyclic extension, G = ⟨σ⟩. This clearly includes every finite K. In
this scenario, we view L as a K[X]-module via X ⇝ σ, and the structure theorem factorizes L as
the sum of invariant subspaces

L ≃ K[X]

(P1)
⊕ · · · ⊕ K[X]

(Pr)
, P1| · · · |Pr.

Since L|K is finite, Pi ̸= 0. By Lemma 1.1, we also can’t have 0 < deg(Pi) < [L : K]. Thus the
only possibility is L ≃ K[X]/(X [L:K] − 1). The basis

{
1, X, · · · , X [L:K]−1

}
pulls back along this

isomorphism as a normal basis.
For more details, see Thm 9.5.6 here.

2 Module theoretic proof

The idea is to use the following result.

Proposition 2.1. Let G be a group, and let L|K be a finite extension of fields. Then the base
change functor L ⊗ − : K[G]–Mod −→ L[G]–Mod is conservative, i.e., if two K[G]-modules V ,
W satisfy L ⊗ V ≃ L ⊗ W , then V ≃ W . Here by “module” we always mean modules that are
finite-dimensional over K.

The assumption that L|K is finite can be dropped in this result; see end of this note.

Proof. Recall the Krull-Remak-Schmidt theorem: If M is a R-module of finite length, then there
exists a unique (up to isomorphism and reordering) decomposition of M into indecomposable mod-
ules:

M ≃
n⊕

i=1

Mi.

All modules have finite length under the assumption we noted.
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If L ⊗ V ≃ L ⊗ W as L[G]-modules, they must be isomorphic as K[G]-modules as well. The
result then follows from

L⊗ V ≃ V ⊕[L:K], in K[G]–Mod,

and comparing the indecomposable components of both sides.

This easy fact from representation theory now allows us to give a proof without worrying about
the finiteness of K. More specifically, we will establish the following isomorphisms of right K[G]-
modules1

L⊗K L
∏
σ∈G

Lσ L⊗K[G]∼ ∼

where the actions are given by l · τ := τ−1(l), eσ · τ := eστ and the right multiplication of K[G],
respectively.

2.1 The first isomorphism

This is given by

L⊗K L
∏
σ∈G

Lσ

l ⊗m (lσ(m))σ

∼

Evidently, this defines a homomorphism of right G-modules, so it suffices to prove this is a
bijection. There are two ways to see this. The first idea is to use Lemma 1.1. Let b1, · · · , bd be a
K-basis of L, then any element of L⊗K L can be put in the form

d∑
i=1

li ⊗ bi 7−→

(
d∑

i=1

liσ(bi)

)
σ

Thus the matrix of this homomorphism is (σ(bi))σ,i, which is invertible precisely by the linear
independence of characters. Hence the map is an isomorphism.

A completely different approach is given by the primitive element theorem. Let

L = K(α) ≃ K[X]/(P ), basis:
{
1, α, α2, · · ·

}
.

Then

L⊗K L ≃ L⊗K[X]/(P ) = L[X]/(P )
∏
σ

Lσ.
∼

CRT

Since P (X) =
∏

σ(X − σ(α)), we confirm this defines the same map as above.

Remark 2.2. I think it makes some sense to call this isomorphism “the normal basis theorem”,
which is itself just primitive element thm + CRT. Galois!

Remark 2.3. If we write the RHS as Map(G,L), then this isomorphism generalizes to infinite
L|K, with an small extra smoothness condition.

1They are of course also (left) L-linear, but we don’t need it, as we saw in the proof of Proposition 2.1.
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2.2 The second isomorphism

This is given by

L⊗K[G]
∏
σ∈G

Lσ

l ⊗ σ leσ

∼

It turns out that this map is natural, so there are a ton of ways to see it. For example, both
sides are the induced module of the K[Gop]-module L equipped with a trivial right G-action.

2.3 QED

We could work with a left G-action, but it seems natural to define it as a right action. Perhaps the
important thing is that, in either case, we need to define the action as eσ 7→ eστ±1 .

The End

As we noted, Proposition 2.1 holds for any field extension L|K, not just the finite ones. To see this,
note that giving an isomorphism L⊗ V ≃ L⊗W is equivalent to giving two n× n (n := dimV =
dimW ) matrices A,B with entries in L, satisfying

AB = BA = 1n×n,

AϕV (g) = ϕW (g)A, BϕW (g) = ϕV (g)B ∀g ∈ G.

The ϕ(·) denotes the representations G −→ GL(·) ≃ Matn(K). Hence the 2n2 entries of A and B
are equivalently solutions of a family of polynomial equations with coefficients in K. Now apply

Lemma 2.4. Let {Pi} be a (possibly infinite) family of polynomials in K[X1, X2, · · · , Xn]. If they
have a common zero over some field extension L|K, then they have a common zero over some finite
extension of K.

Proof. This is a consequence of the weak Nullstellensatz. Since the Pi can not generate the ideal (1),
they must have a zero over K whose coordinates lies in an algebraic extension in n generators.
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