Normal basis theorem

math center

The familiar normal basis theorem states that:

Theorem 0.1. Let L|K be a finite Galois extension with Galois group G. Then L ~ K[G] as left
G-modules.

In other words, L viewed as a representation is isomorphic to the regular representation of G.
It then follows that

H"(G,L) = H"(G,K[G]) = H"(G,Ind{}, (K)) =0,

for all » > 0, where the last equality is Shapiro’s lemma.

1 Field theoretic proof

Let’s only sketch this proof because it’s somewhat long, although being quite elegant otherwise.

Lemma 1.1 (Linear independence of characters). If K is an integral domain and G is a monoid,
then the set of characters Hompmon (G, K*) is linear independent over K.

Of course, we only need the case of K a field and G a group.

Proof. Let x1, -, xn be characters. Consider the set
S:={(c1,--+,¢,) € K" \O0: c1x1+ -+ cnxn =0}

Let (aj,---,a,) be an element of S such that n := |{i : a; # 0}| is minimal. Because x(1) =1 for
any character x, n > 1. Thus we may assume WLOG that a;,as # 0. Let h € G be a constant to
be determined. Notice that

—a1xi1(gh) = Z aixi(gh) = Z aixi(g)xi(h),

and also
—arx1(gh) = —arxa(9)xi(h) = > aixi(9)xa(h).

i>1
Pick h € G such that x1(h) # x2(h). On subtracting the two equations, we obtain a nonzero linear
relation which clearly contradicts the minimality of (a;). O

We first prove the theorem for infinite K. This amounts to the following two facts.

(I) Given that K is infinite, for any K-algebra A and L|K, the set Hom g aig(A, L) is algebraically
independent over L.

(IT) Let {z, € L : 0 € G} be a set of elements indexed by G, then it is a basis if and only if
det (7(2,)), . # 0.
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Since there exists a basis indexed by G, the formal polynomial (modulo abuse of notation)
7(Xs))y, # 0. We may plug in X, = o(-), and by (I), there must exist z € L such that
To(x)), . # 0. We apply (II) one more time to see that {o(x)} is indeed a basis of L.

IT) follows from Lemma 1.1.

I) is more tricky to prove. We need to show that P(x1,- -, xn) 7 0 for some nonzero polynomial
PeL[Xy, -+ ,X,]. The set

det

(
det (
(
(

{(Xl(a)> T aXn(a» rac A}

generates the L-vector space L™ by Lemma 1.1, hence there must exist ai,--- ,a, such that the
matrix (xi(a;)), ; is invertible. Consider the map

Kt — — A

(K1, kp) —— Zl kia;

composed with P(x1(-), - ,Xn(-)). This is non-zero as a formal polynomial because P # 0, thus
it must also be non-zero as a function. Here we used that K is infinite. This concludes the proof
of (I).

Now, suppose that L|K is a cyclic extension, G = (o). This clearly includes every finite K. In
this scenario, we view L as a K[X]-module via X ~» o, and the structure theorem factorizes L as
the sum of invariant subspaces

KIY) KX
P) AN

Since L|K is finite, P; # 0. By Lemma 1.1, we also can’t have 0 < deg(P;) < [L : K]. Thus the
only possibility is L ~ K[X]/(XK] —1). The basis {1,X, e ,X[L:K]*l} pulls back along this
isomorphism as a normal basis.

For more details, see Thm 9.5.6 here.

L~ Pyl |P.

2 Module theoretic proof

The idea is to use the following result.

Proposition 2.1. Let G be a group, and let L|K be a finite extension of fields. Then the base
change functor L ® — : K[G]-Mod — L[G]-Mod is conservative, i.e., if two K[G]-modules V,
W satisfy L@V ~ L ® W, then V ~ W. Here by “module” we always mean modules that are
finite-dimensional over K.

The assumption that L|K is finite can be dropped in this result; see end of this note.

Proof. Recall the Krull-Remak-Schmidt theorem: If M is a R-module of finite length, then there
exists a unique (up to isomorphism and reordering) decomposition of M into indecomposable mod-

ules: .
M ~ @ Mi-
i=1

All modules have finite length under the assumption we noted.
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LRV ~L®W as L[G]-modules, they must be isomorphic as K[G]-modules as well. The
result then follows from
LoV ~ VoKl i K[G]-Mod,

and comparing the indecomposable components of both sides. O
This easy fact from representation theory now allows us to give a proof without worrying about

the finiteness of K. More specifically, we will establish the following isomorphisms of right K|[G]-
modules!

Lox L — [[ L, «+=— Le K[G]
ceG

where the actions are given by [ -7 := 771(I), e, - T := €, and the right multiplication of K[G],
respectively.

2.1 The first isomorphism
This is given by
Leog L —— H L,
oeG
l@m —— (lo(m)),
Evidently, this defines a homomorphism of right G-modules, so it suffices to prove this is a

bijection. There are two ways to see this. The first idea is to use Lemma 1.1. Let b1,--- ,bq be a
K-basis of L, then any element of L ® ¢ L can be put in the form

d d
=1 i=1

Thus the matrix of this homomorphism is (o(b;)), ;, which is invertible precisely by the linear
independence of characters. Hence the map is an isomorphism.
A completely different approach is given by the primitive element theorem. Let

o

L=K(a)~ K[X]/(P), basis: {1,a,0% - }.

Then
Lok L~L®K[X]/(P)=LX]/(P) == [] Lo-
Since P(X) =]

- (X —o(a)), we confirm this defines the same map as above.

Remark 2.2. I think it makes some sense to call this isomorphism “the normal basis theorem”,
which is itself just primitive element thm + CRT. Galois!

Remark 2.3. If we write the RHS as Map(G, L), then this isomorphism generalizes to infinite
L|K, with an small extra smoothness condition.

IThey are of course also (left) L-linear, but we don’t need it, as we saw in the proof of Proposition 2.1.



2.2 The second isomorphism
This is given by

L® K[G] —— ][] L.
ceG

Qo — ley

It turns out that this map is natural, so there are a ton of ways to see it. For example, both
sides are the induced module of the K[G°P]-module L equipped with a trivial right G-action.

2.3 QED

We could work with a left G-action, but it seems natural to define it as a right action. Perhaps the
important thing is that, in either case, we need to define the action as e, — e, +1.

The End

As we noted, Proposition 2.1 holds for any field extension L| K, not just the finite ones. To see this,
note that giving an isomorphism L ® V ~ L ® W is equivalent to giving two n x n (n :=dimV =
dim W) matrices A, B with entries in L, satisfying

AB=BA=1,,,.
Apv(g) = dow(9)A, Bowl(g) =o¢v(g)B Vged.

The ¢y denotes the representations G — GL(-) ~ Mat, (K ). Hence the 2n? entries of A and B
are equivalently solutions of a family of polynomial equations with coefficients in K. Now apply

Lemma 2.4. Let {P;} be a (possibly infinite) family of polynomials in K[X;, X5, -+, X,,]. If they
have a common zero over some field extension L|K, then they have a common zero over some finite
extension of K.

Proof. This is a consequence of the weak Nullstellensatz. Since the P; can not generate the ideal (1),
they must have a zero over K whose coordinates lies in an algebraic extension in n generators. [
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