

# Nakayama's Lemma

math center

This note tries to cover some basic commutative algebra. So *all rings are commutative*.

Indeed, Nakayama's lemma is used to reduce finite modules to linear algebra. Let's start with the linear algebra.

**Theorem 0.1** (Hamilton-Cayley). Let  $R$  be a ring and let  $A \in \text{Mat}_n(R)$ . Then  $\chi_A(A) = 0$ .

*Proof.* There are of course a ton of ways to prove this. The most standard proof is

$$\chi_A(t) := \det(t - A) \implies \chi_A(A) = \det(0) = 0.$$

In more details, let  $Y = R[t]$  be a formal polynomial ring, and  $V := R^{\oplus n}$  has a  $Y$ -module structure given by  $t \rightsquigarrow A$ . Consider the base change  $V_Y = Y^{\oplus n}$  of  $V$  and  $t - A \in \text{End}(V_Y)$ . Observe that the composition

$$V \longrightarrow V_Y \longrightarrow \text{coker}(t - A)$$

is an isomorphism of  $Y$ -modules. Thus  $\chi_A(t) = (t - A)^\vee(t - A)$  annihilates  $V$ .  $\square$

**Remark 0.2.** Alternatively, observe that this is a purely formal proposition and it suffices to give a proof over the field  $\mathbb{Q}(X_{11}, X_{12}, \dots, X_{nn})$ . Since a matrix  $A$  is non-diagonalizable if and only if the discriminant of the determinant of  $t - A$  vanishes, the set these matrices is a Zariski closed set. Indeed, an infinite field, every nonempty Zariski open set is dense. Hence we may reduce to the case where  $A$  is diagonal, which is trivial.

## 1 Nakayama

**Theorem 1.1** (Nakayama's lemma, 1st version). Let  $R$  be a ring and  $I$  be an ideal. If  $M$  is a finitely generated  $R$ -module, we have

- (a) If  $\varphi \in \text{End}(M)$  and  $\varphi(M) \subset IM$ , then  $\varphi$  satisfies a polynomial equation  $X^n + \sum_{d=0}^{n-1} a_d X^d = 0$ , where  $a_d \in I^{n-d}$ .
- (b) If  $IM = M$ , then there exists  $\alpha \in 1 + I$  which annihilates  $M$ .

*Proof.* (b) follows from (a) by taking  $\varphi = \text{id}_M$ . Pick a set  $\{e_i\}_{i=1}^n$  of generators of  $M$ . Using condition of (a) we have elements  $a_{ij} \in I$  satisfying

$$\varphi(e_i) = \sum_j a_{ij} e_j, \quad \forall i.$$

In other words, the matrix  $A = (a_{ij})$  makes the following diagram commute:

$$\begin{array}{ccc} R^{\oplus n} & \xrightarrow{A} & M^{\oplus n} \\ & \searrow & \swarrow \\ & M & \end{array}$$

where the two surjections are both given by  $(x_i)_i \mapsto \sum x_i e_i \in M$ . The polynomial  $\chi_A(t)$  has the required form, and by Hamilton-Cayley,  $\chi_A(\varphi) = 0 \in \text{End}_R(M)$ .  $\square$

**Proposition 1.2.** Let  $M$  be a finitely generated  $R$ -module. If  $\varphi : M \rightarrow M$  is surjective, then it is an isomorphism.

*Proof.*  $M$  has a finitely generated  $R[t]$ -module structure given by  $t \rightsquigarrow \varphi$ . In Theorem 1.1 (b), take  $I = (t)$ . The condition  $IM = M$  follows from surjectivity of  $\varphi$ . We conclude that  $1 + tf(t)$  annihilates  $M$  for some  $f(t) \in R[t]$ , and the result follows.  $\square$

**Definition 1.3.** The Jacobson radical in a ring  $R$  is the intersection of all maximal ideals, denoted by  $\text{rad}(R)$ .

**Lemma 1.4.** If  $I$  is an ideal of  $R$ , then  $I \subset \text{rad}(R)$  if and only if every element of  $1 + I$  is a unit.

*Proof.* If  $\beta \in \text{rad}(R)$ , then  $1 + \beta$  does not lie in any maximal ideal, so it must be a unit. Conversely, if  $I \not\subset \mathfrak{m}$  for some maximal ideal  $\mathfrak{m} \subset R$ , then the quotient map  $R \rightarrow R/\mathfrak{m}$  is surjective on  $I$ . In particular, there exists  $\beta \in I$  such that  $1 + \beta \in \mathfrak{m}$ .  $\square$

**Corollary 1.5.** Let  $M$  be a finitely generated  $R$ -module. If  $I \subset \text{rad}(R)$  and  $IM = M$ , then  $M = 0$ .

*Proof.* By Theorem 1.1 (b).  $\square$

Put  $k := R/I$  and denote the base change as  $(-)_k := (-) \otimes k$ , even when  $k$  is not a field.

**Corollary 1.6** (Nakayama's lemma, 2nd version). Let  $M, N$  be  $R$ -modules,  $I \subset \text{rad}(R)$ . Suppose that  $M$  is finitely generated. We have

- (a) If  $M_k = 0$ , then  $M = 0$ .
- (b) If  $\varphi \in \text{Hom}_R(N, M)$  and  $\varphi_k$  is surjective, then so is  $\varphi$ .
- (c) A subset  $\{x_i\}_{i=1}^n \subset M$  generates  $M$  if and only if  $\{\bar{x}_i\}_i$  generates  $M_k$ .

*Proof.* If  $M_k = M \otimes (R/I) = M/IM = 0$ , then  $M = 0$  by the last corollary. This proves (a). Now tensor the following SES with  $k$ ,

$$0 \longrightarrow N \longrightarrow M \longrightarrow \text{coker} \longrightarrow 0$$

And we see that  $\text{coker} \otimes k = 0$ . Clause (b) then follows from (a). Finally, we show (c) by applying (b) to the map  $R^{\oplus n} \longrightarrow M$ .  $\square$

## 2 An application

Let  $(R, \mathfrak{m}, k)$  be a Noetherian local ring, and  $M$  be a finitely generated flat  $R$ -module. Then  $M$  is in fact free.

To see this, lift a basis of  $M_k$  to a minimal set of generators of  $M$  using (c), and consider the sequence

$$0 \longrightarrow \ker \longrightarrow R^{\oplus n} \longrightarrow M \longrightarrow 0$$

On tensoring with  $k$ , since  $\text{Tor}_1^R(M, k) = 0$ , we obtain an exact sequence of  $k$ -vector spaces

$$0 \longrightarrow \ker \otimes k \longrightarrow k^{\oplus n} \xrightarrow{\sim} M_k \longrightarrow 0$$

So  $\ker \otimes k = 0$ .  $\ker$  is finitely generated as a submodule of  $R^{\oplus n}$ , thus (a) implies that  $\ker = 0$ , as desired.

## The End

Compiled on 2025/10/29.

[Home page](#)