
x²+3y²=p
math center

Today we do a basic exercise in algebraic number theory while also take note of some results
and the chains of logic involved.

Let p be a prime number. We wish to find integral solutions to the equation

x2 + 3y2 = p. (1)

This is the same as

Nm
(
x+

√
−3y

)
=

(
x+

√
−3y

) (
x−

√
−3y

)
= p.

By considering the norm (Nm(p) = p2), we see that such a solution exists if and only if p is reducible
in Z[

√
−3].

Let K = Q(
√
−3). Its ring of integers is known by the following result:

Proposition 0.1. Let K = Q(
√
m) for a square-free m ̸= 1, then the ring of integers and the

discriminant are given by

• If m ≡ 2, 3 (mod 4), then OK = Z[
√
m] and disc(OK |Z) = 4m.

• If m ≡ 1 (mod 4), then OK = Z[ 1+
√
m

2 ] and disc(OK |Z) = m.

Proof. In either case, we have

D(1,
√
m) = (OK : Z[

√
m])2 disc(OK |Z),

which can be easily computed as

D(1,
√
m) =

∣∣∣∣ Tr(1) Tr(
√
m)

Tr(
√
m) Tr(m)

∣∣∣∣ = 4m.

So we have (OK : Z[
√
m]) ∈ {1, 2}. To conclude the proof, we note that

• Stickelberger’s theorem states that disc(OK |Z) ≡ 0, 1 (mod 4), so if m ≡ 2, 3 (mod 4), we
must have (OK : Z[

√
m]) = 2.

• On the other hand, if m ≡ 1 (mod 4), the polynomial X2 −X + 1−m
4 has integral coefficients

and has 1+
√
m

2 /∈ Z[
√
m] as a root.

This completes the proof.

Since m = −3, we have the second scenario, and OK = Z[ω] where ω3 = 1.

Theorem 0.2. Let A be a Dedekind domain with field of fractions K. If the integral closure B
of A in a finite separable extension L|K satisfies B = A[α], then the factorization of any prime
ideal p of A can be determined as follows. Factorize the mininal polynomial f of α into distinct
irreducibles gi ∈ A[X] modulo p, i.e.

f ≡
∏
i

geii (mod p), ei > 0.
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Then we have
pB =

∏
i

(p, gi(α))
ei

is the factorization of pB into distinct prime ideals.

Proof. B/pB ≃ B ⊗A/p ≃ A[X]/(f)⊗A/p ≃ (A/p)[X]/(f̄). The ideal pB is uniquely determined
by this quotient because (a) its prime factors are precisely the prime ideals in the quotient, and (b)
the ramification index e of each factor P is the largest number such that Pe ̸= 0.

If we don’t have B = A[α], we can still apply this result for some p and α. Write

disc(1, α, · · · , αn−1) = a · disc(B|A).

If p ∤ a, then we can invert any element in a\p, or what is the same, localize at p. Then Bp = Ap[α],
and the same result holds.

1 The solution

Back to the problem. We have A = Z, p = (p), B = Z[ω]. If p = 2, we can’t apply the previous
result, but obviously (1) has no solution. From now on let p ̸= 2.

From the above discussion, (p) splits/ramifies in B if and only if f(X) = X2 + 3 is reducible
modulo p. We have the following chain of implications.

(1) has a solution

=⇒ (p) splits/ramifies in B

⇐⇒ X2 + 3 is reducible in (Z/(p))[X]

⇐⇒ − 3 is a square modulo p

⇐⇒ p is a square modulo 3 (♡)

⇐⇒ p ≡ 0, 1 (mod 3)

where, in the line (♡), we used the well-known quadratic reciprocity:(
−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)

p−1
2

(
p

3

)
(−1)

p−1
2 ·1 =

(
p

3

)
.

It remains to prove the converse of the first =⇒. First, note that

Lemma 1.1. Z[ω] is a PID.

Proof. It is well known that the number field Q[
√
−3] has class number 1. See section 3.

Hence, if (p) splits/ramifies in B, it must be the principal ideal generated by the product of two
irreducibles in B, and hence must take the form

(u+ vω)(u+ vω) = p,

where u, v ∈ Z. Side note: LHS = u2 − uv + v2.

Finally, we must check that up to a unit Z[ω]× = ⟨−1, ω⟩, u+ vω
!∼ x+ y

√
−3. Indeed,
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• If v is even, there is nothing to prove;

• If u is even and v is odd, ω2(u+ vω) = v + uω ∈ Z[
√
−3];

• If u, v are both odd, then ω(u+ vω) =
((u+v)+(u−v)

√
−3)

2 ∈ Z[
√
−3].

This completes the proof.

2 Fermat

According to Milne, this result we just proved

(1) has a solution ⇐⇒ p ≡ 0, 1 (mod 3)

was (probably) proven by Fermat himself. It is unlikely that he took the above approach—and he
didn’t really need to. We shall now sketch a proof using his method of infinite descent.

Only the ⇐= direction deserves a proof. Also assume that p > 3. First, we solve (1) modulo p.
This amounts to solving (

x

y

)2

≡ −3 (mod p).

Even without QR, it is possible to observe that such solution must exist if p ≡ 1 (mod 3). As
hinted by the above manipulations, we have

(u/v)3 ≡ 1, u ̸≡ v (mod p)

=⇒ u2 − uv + v2 ≡ 0 (mod p)

=⇒ (2u− v)2 ≡ −3v2 (mod p).

Now, let x, y ∈ Z, k ∈ Z>0 be such that

x2 + 3y2 = kp

and k is minimal among all such triples (x, y, k). Let u, v be integers with smallest absolute value
which satisfy

u ≡ x, v ≡ y (mod k).

Let u2 + 3v2 = k′k. Clearly, assuming that k > 1, we have k′ > 0.
Note an equivalent formulation of multiplicity of the norm

(x2 + 3y2)(u2 + 3v2) = (xu+ 3yv)2 + 3(xv − yu)2.

Since both xu+ 3yv and xv − yu are divisible by k, we have

k′p =

(
xu+ 3yv

k

)2

+ 3

(
xv − yu

k

)2

.

However,

k′k = u2 + 3v2 ≤ 4

(
k

2

)2

= k2.

Thus we have k′ ≤ k, and so k′ = k by the minimality of k. This is only possible if both |u| = |v| =
k/2 ∈ Z and k = p, which is absurd.

Hence, it must be that k = 1.
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3 Appendix: quadratic number fields of class number 1

Suppose that −d = 1, 2, 3, 7, 11, 19, 43, 67, 163. It is well-known that K := Q[
√
d] has class number

h = 1, i.e. OK is a PID. Let’s see why this is true.
Of course, we have to start examining each case by finding the ring of integers using Proposition

0.1. We will also need the following result for reducing the number of primes to check into a very
managable, finite number.

Definition 3.1. Let K be an degree n extension of Q, and let 2s be the number of nonreal complex
embeddings K ↪→ C. Then the Minkowski bound is given by

BK =
n!

nn

(
4

π

)s

.

Theorem 3.2. Under the same assumptions as above, there exists a representative a for each
element of the class group Cl(K), satisfying

N(a) = |N (a)| ≤ BK |∆|
1
2 ,

where ∆K is the discriminant of OK |Z.

Proof.(sketch). a embeds into Rn−2s ⊕ Cs ≃ Rn as a full lattice. Denote its fundamental paral-
lelopiped as D. We should be able to see that

µ(D) = 2−s · Na · |∆K |
1
2 .

Then, by Minkowski’s theorem, there exists an α ∈ a whose image in Rn has coordinates controlled
by this number. The result then follows from this.

In our case, we always have a imaginary quadratic field, so BK = 1
2 · 4

π ≤ 0.637.

3.1 d = −1

OK = Z[
√
−1]. This is a Euclidean domain.

3.2 d = −2

OK = Z[
√
−2] and ∆K = −8. We only need to consider primes (in Z) that are ≤ BK |∆K |1/2 ≤

1.81. There are none, so we have nothing to check.

3.3 d = −3

OK = Z[ 1+
√
−3

2 ] and ∆K = −3. As BK |∆K |1/2 ≤ 1.11, we have nothing to check.

3.4 d = −7

OK = Z[ 1+
√
−7

2 ] and ∆K = −7. As BK |∆K |1/2 ≤ 1.69, we have nothing to check.
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3.5 d = −11

OK = Z[ 1+
√
−11
2 ] and ∆K = −11. We have BK |∆K |1/2 ≤ 2.12.

• p = 2. The factorization of p in OK is equivalent to the factorization ofX2−X+3 ≡ X2+X+1
(mod 2), which is clearly irreducible. That is, the prime 2 is inert in OK .

3.6 d = −19

OK = Z[ 1+
√
−19
2 ] and ∆K = −19. We have BK |∆K |1/2 ≤ 2.78.

• p = 2. X2 −X + 5 ≡ X2 +X + 1 (mod 2) is irreducible, so the prime 2 is inert.

3.7 d = −43

OK = Z[ 1+
√
−43
2 ] and ∆K = −43. We have BK |∆K |1/2 ≤ 4.18.

• p = 2. X2 −X + 11 ≡ X2 +X + 1 (mod 2) is irreducible, so the prime 2 is inert.

• p = 3. X2 −X + 11 ≡ X2 −X − 1 (mod 3) is irreducible, so the prime 3 is inert.

3.8 d = −67

OK = Z[ 1+
√
−67
2 ] and ∆K = −67. We have BK |∆K |1/2 ≤ 5.22.

• p = 2. X2 −X + 17 ≡ X2 +X + 1 (mod 2) is irreducible, so the prime 2 is inert.

• p = 3. X2 −X + 17 ≡ X2 −X − 1 (mod 3) is irreducible, so the prime 3 is inert.

• p = 5. X2 −X + 17 ≡ X2 −X − 3 (mod 5) is irreducible, so the prime 5 is inert.

3.9 d = −163

OK = Z[ 1+
√
−163
2 ] and ∆K = −163. We have BK |∆K |1/2 ≤ 8.14.

• p = 2. X2 −X + 41 ≡ X2 +X + 1 (mod 2) is irreducible, so the prime 2 is inert.

• p = 3. X2 −X + 41 ≡ X2 −X − 1 (mod 3) is irreducible, so the prime 3 is inert.

• p = 5. X2 −X + 41 ≡ X2 −X + 1 (mod 5) is irreducible, so the prime 5 is inert.

• p = 7. X2 −X + 41 ≡ X2 −X − 1 (mod 7) is irreducible, so the prime 7 is inert.

Remark 3.3. To prove irreducibility of X2−X+ 1−d
4 modulo an odd prime p, instead of checking

every element of Fp, it is easier to show that ∆K is not a square modulo p, i.e., that(
∆K

p

)
= −1.

Final remark: In 1952, Heegner proved that this list exhausts all imaginary quadratic number
fields with class number 1.
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The End

Compiled on 2025/10/14.
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