
Solving the homogeneous linear ODE in calculus,
justified?
math center

Fix the field k = R or C. We will be working with (vectors of) anayltic functions over k which
we denote by O(−).

1 Homogeneous linear ODE

Theorem 1.1 (Cauchy). Let 0 < R ≤ ∞ andD := {z ∈ k : |z| < R}. Suppose A ∈ Matn×n(O(D))
is a matrix of analytic functions on D. Then given any u0 ∈ kn, there is a unique vector-valued
analytic function u ∈ O(D)n such that u(0) = u0 and u′(z) = A(z)u(z) for all z ∈ D.

Proof of Uniqueness. It is well known that any function in O(D) has a unique Taylor expansion
centered at 0 that converges everywhere on D. Let’s write

A(z) =

∞∑
r=0

Arz
r, Ar = (aij,r)ij ∈ Matn×n(k),

and

u(z) =

∞∑
r=0

urz
r, ur = (ui,r)i ∈ kn.

Note that this agrees with the given u0. The equation u′(z) = A(z)u(z) becomes

∞∑
r=0

rurz
r−1 =

∞∑
t=0

At

∞∑
s=0

usz
t+s =

∞∑
r=0

(
r∑

s=0

Ar−sus

)
zr.

By comparing the coefficients of both sides, we deduce that

(r + 1)ur+1 =

r∑
s=0

Ar−sus, ∀r ≥ 0. (1)

This is a full recurrence relation for the ur’s.

Proof of Existence. Let ur be given by the recurrence relation (1) with the initial value u0. We
need to show that the series for u(z) converges within D.

For any 0 < ρ < R, the series
∞∑
r=0

|aij,r| ρr

converges for all i, j. Hence there exists a natural number N such that

|aij,r| ρr ≤ Nρ−1, ∀i, j, r.

Define the following matrix

B(z) =

∞∑
r=0

Brz
r, Br = (bij,r)ij ,
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where

bij,r :=
N

ρr+1
≥ |aij,r| , ∀i, j, r. (2)

We then look for a solution of the form v(z) = (f(z), · · · , f(z)) to the equation v′(z) = B(z)v(z)
within a smaller disk D′ = {z : |z| < ρ}. As every entry of B(z) is equal to

b(z) :=
N

ρ

(
1− z

ρ

)−1

∈ O(D′),

this is not difficult to solve:
f ′(z) = nb(z)f(z)

=⇒ f(z) = C exp

{
n

∫ z

0

b(t)dt

}
= C

(
1− z

ρ

)−nN

∈ O(D′).

Here C = f(0) is an initial value yet to be determined. Thus, applying (1) to this equation, we can
write

v(z) =

∞∑
r=0

vrz
r, (r + 1)vr+1 =

r∑
s=0

Br−svs, ∀r ≥ 0.

This completes the setup for Cauchy’s majorization method. Once we set

C = v1,0 = · · · = vn,0
!
= max{|u1,0| , |u2,0| , · · · , |un,0|} > 0,

we can show that every component of vr is positive using induction. Then, by doing another
induction on r with (2), we obtain

|ui,r| ≤ vi,r, ∀i, r.

Since v(z) ∈ O(D′)n converges, the series u(z) =
∑∞

r=0 urz
r converges on D′ as well. This

completes the proof.

Corollary 1.2. The analytic solutions y ∈ O(D) to the following ODE

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0, ai ∈ O(D), ∀i,

form a k-vector space of dimension n.

Proof. This equation is turned into the previous matrix equation by putting

u =
(
y, y′, · · · , y(n−1)

)⊤
.

The matrix A is defined accordingly. The theorem gives an isomorphism between {u : u′ = Au}
and kn.
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2 A generalization

The theorem has a natural generalization to Riemann surfaces. Let M be a simply connected
Riemann surface, p ∈ M .

Suppose A ∈ Matn×n(Ω
1,0(M)) is a matrix of holomorphic 1-forms on M . We solve for a

vector-valued holomorphic function u ∈ O(M)n satisfying u(p) = u0 and

du = Au. (3)

For any open subset U ⊂ M , denote by F(U) ⊂ O(U) the set of solutions to (3) on U . Then F
is a sheaf of C-vector spaces on M .

Corollary 2.1. For each u0 ∈ kn, there exists a unique u satisfying the above conditions.

Proof. First, let’s confirm that the equation locally reduces to the theorem. Around any point
m ∈ M , we may take a holomorphic chart z : U

∼−→ D where D is a disk in the complex plane
centered at z(m). Then matrix A can then be written as A = Ãdz for some Ã ∈ Matn×n(O(U)).
Identifying U with D, the equation becomes

du = Ãudz ⇐⇒ u′ = Ãu.

Hence the theorem applies, implying that evm : F(U) −→ Cn is an isomorphism of C-vector spaces.
As a result, any two local solutions agreeing at a point m must coincide in a neighborhood of

m. By basic complex analysis, they must coincide on the entire connected component containing
m, wherever they are both defined. It follows that for any m ∈ V with V open and connected, the
evaluation map evm : F(V ) −→ Cn is injective.

Moreover, consider open and connected subsets ∅ ̸= V ⊂ U , such that F(U) ≃ Cn. Then the
injectivity implies that the restriction map F(U) −→ F(V ) is a bijection. Since such U ’s cover M ,
we conclude that F is a locally constant sheaf.

Therefore the étale space of F is a covering space of M . Since M is simply connected, the
covering space must be trivial. In other words, F is a constant sheaf. It follows that F(M) ≃
Cn.

Remark 2.2. In the above proof, only the last step used simply connectedness of M . More
generally, we have the following. The proof is both extremely routine and awfully long, so of course
it won’t be included here.

Theorem 2.3. Let X be a connected, locally path connected and semi-locally simply connected
space, x ∈ X. Then

(i) The category of locally constant sheaves of sets on X is equivalent to the category of left
π1(X,x)-sets.

(ii) Let R be a commutative ring. The category of locally constant sheaves of R-modules on X
is equivalent to the category of left R[π1(X,x)]-modules.

(iii) The above equivalences are given by the stalk functor F 7→ Fx and a reconstruction functor,
obtained by constructing étale spaces as the quotients of the universal cover by the stabilizer
of each orbit of the π1(X,x)-action, and then taking the disjoint union of them.
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The End

Fun fact: I don’t know what happens if we consider smooth functions instead.

Compiled on 2025/07/24.
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