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In this note, we prove the following formula

log(2) =

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ · · · (1)

from the series expansion of log(1 + x), which is

log(1 + x) =

∞∑
n=1

(−1)n+1

n
xn, |x| < 1. (2)

Here everything in (2) are assumed to be known. We will show that (i) the series in (1) converges,
(ii) given the convergence, the series in (2) is continuous near x = 1.

Proposition 0.1 (Dirichlet’s test). Let {an}n≥1 be a sequence of complex numbers and denote its
partial sums as An :=

∑n
k=1 ak. Suppose that the partial sum is bounded:

∃M > 0, |An| ≤ M for all n ≥ 1.

Let {bn}n≥1 be a sequence of real numbers that monotonically decreases to 0. Then the series∑∞
k=1 akbk converges, and we have ∣∣∣∣∣

∞∑
k=1

akbk

∣∣∣∣∣ ≤ Mb1.

Proof. First, we derive the usual summation by parts.

Ak+1bk+1 −Akbk = ak+1bk+1 +Ak(bk+1 − bk).

Summing this from k = 1 to n− 1, we obtain

Anbn −A1b1 =

n∑
k=2

akbk +

n−1∑
k=1

Ak(bk+1 − bk).

The result follows easily from this.

Remark 0.2. Replace Ak by ak and ak by (∆a)k−1 to obtain the ’more standard’ summation by
parts formula.

Corollary 0.3. Suppose that µ ∈ C \ {1} and |µ| ≤ 1. Let {bn}n≥1 be a sequence of real numbers
that monotonically decreases to 0. Then the series

∑∞
k=1 µ

kbk converges, and we have∣∣∣∣∣
∞∑
k=1

µkbk

∣∣∣∣∣ ≤ 2

|1− µ|
b1.

Proof. Obvious.
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Corollary 0.4 (Alternating series test). Let {bn}n≥1 be a sequence of real numbers that mono-
tonically decreases to 0. Then the series

∑∞
k=1(−1)k+1bk converges, and we have∣∣∣∣∣

∞∑
k=1

(−1)k+1bk

∣∣∣∣∣ ≤ b1.

Proof. Obvious.

In particular, (1) converges. Now we prove the second part.

Theorem 0.5 (Abel). Let f(x) =
∑∞

n=1 an(z− z0)
n be a power series with finite radius of conver-

gence R > 0. Suppose that there is a point ζ = z0 + Reiθ such that the series
∑∞

n=1 an(ζ − z0)
n

converges.
Then the power series converges uniformly on the segment [z0, ζ]. In particular, we have

f(ζ) = lim
r→R−

f(z0 + reiθ).

Proof. WLOG assume z0 = 0. By considering the series
∑∞

n=1 an
(
Reiθ

)n
zn for r ∈ [0, R), we may

also assume ζ = 1. Now we have f(x) =
∑∞

n=1 anz
n and the convergence of the series

∑∞
n=1 an.

We need to prove the result for the interval [0, 1].
Fix ε > 0. By Cauchy’s criterion, there exists N such that

m ≥ n ≥ N =⇒

∣∣∣∣∣
m∑

k=n

ak

∣∣∣∣∣ < ε.

For any n ≥ N and x ∈ [0, 1), Dirichlet’s test applies to the sequences {ak+n}k≥1 and {xk+n}k≥1,
showing that the series

∑∞
k=1 ak+nx

k+n =
∑∞

k=n+1 akx
k converges on [0, 1). More importantly, we

have the estimate ∣∣∣∣∣
∞∑

k=n+1

akx
k

∣∣∣∣∣ ≤ εxn+1 < ε.

Combining with the obvious inequality
∣∣∑∞

k=n+1 ak
∣∣ ≤ ε, we see that

n ≥ N =⇒ sup
x∈[0,1]

∣∣∣∣∣f(x)−
n∑

k=1

akx
k

∣∣∣∣∣ ≤ ε.

This shows the uniform convergence on [0, 1]. Therefore, f is continuous on [0, 1].

This proves (1).
By Corollary 0.3, it is easy to see that the series in (2) converges everywhere on the boundary

|x| = 1 except at x = −1 — not just at x = 1. Hence with Abel’s theorem we might obtain some
other things. We won’t do that here.

The End
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