
Fundamental theorem of symmetric polynomials
math center

Let k be a field, and let K = k(X1, X2, · · · , Xn) be the field of rational functions in n variables.
Sn naturally acts on K by permuting the indeterminates. We then view Sn as a subset of Aut(K).

Lemma 0.1. The extension K|KSn is Galois.

Proof. This extension is the splitting field of the polynomial

f(X) = (X −X1)(X −X2) · · · (X −Xn) ∈ KSn [X], (1)

which clearly has no repeated roots.

We could easily check that Sn = Gal(K|KSn). But for an obvious generalization of this, we
would need to take a slightly tricky path.

Theorem 0.2. Let K be a field and let G ≤ Aut(K) be a finite subgroup. Then K|KG is Galois,
and Gal(K|KG) = G.

Proof. Mimicking (1), for every x ∈ K, we wish to write

gx(X)
?
=

∏
h∈G

(X − h(x)) ∈ (K[X])G = KG[X].

But this doesn’t work, because gx(X) might has repeated roots. The correct solution is to use the
G-orbit of x:

gx(X) =
∏

y∈Gx

(X − y) ∈ (K[X])G = KG[X].

This time, we see that any simple subextension KG(x)|KG is the splitting field of gx(X), and thus
is Galois. We have an upper bound [KG(x) : KG] ≤ |G|. Clearly, every finite subextension of
K|KG is separable, so the primitive element theorem always applies. Combining with the above,
we see that every finite subextension has degree ≤ |G|. This means that K|KG is itself finite (hence
Galois), and [K : KG] = |Gal(K|KG)| ≤ |G|. As G ⊂ Gal(K|KG), the result follows.

The coeffients of f are called the elementary symmetric polynomials in X1, X2, · · · , Xn, and are
denoted by σ1, σ2, · · · , σn, the subscripts indicating their degree. We should be aware of what this
means:

Proposition 0.3. KSn is generated by the elementary symmetric polynomials σ1, σ2, · · · , σn.

Proof. Let L = k(σ1, σ2, · · · , σn) ⊂ KSn . Then K is the splitting field of f(X) over L as well. We
obtain a bound

[K : KSn ] ≤ [K : L] ≤ n!.

By Theorem 0.2, [K : KSn ] = |Sn| = n!. Therefore L = KSn .

Recall that an integral domain R is integrally closed if any element of the field Frac(R) which
is a root of a monic polynomial in R[X] must lie in R.
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Lemma 0.4. Let R = k[X1, X2, · · · , Xn] be the polynomial ring. Then R is integrally closed.

Proof. Brings back the bittersweet middle school memories!

Remark 0.5. For the same reason, any GCD domain is integrally closed. The lemma is a special
case of this.

Theorem 0.6 (Fundamental theorem of symmetric polynomials). We have an equation of subal-
gebras of L and KSn :

k[σ1, σ2, · · · , σn] = KSn ∩ k[X1, X2, · · · , Xn].

Proof. Since n = tr.deg(K|k) = tr.deg(KSn |k), the n generators σ1, σ2, · · · , σn of KSn must be
algebraically independent. Therefore R := k[σ1, σ2, · · · , σn] is a polynomial ring, with KSn as its
field of fraction. By (1), the Xi’s are integral over R. It follows that k[X1, X2, · · · , Xn] is integral
over R for it’s a commutative ring. This completes the proof.

The End

Final remark: I don’t know any commutative algebra. Very inconvenient.
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